Efficient sticking of surface-passivated Si nanospheres via phase-transition plasticity
نویسندگان
چکیده
Large-scale atomistic simulations considering a 5 nm in radius H-passivated Si nanosphere that impacts with relatively low energies onto a H-passivated Si substrate reveal a transition between two fundamental collision modes. At impacting speeds of less than 1000 m /s particle-reflection dominates. At increased speeds the partial onset in the nanosphere of a -tin phase on the approach followed by a-Si phase on the recoil is an efficient dissipative route that promotes particle capture. In spite of significant deformation, the integrity of the deposited nanosphere is retained. Our result explains the efficient fabrication of nanoparticulate films by hypersonic impaction, where the nanoparticle impact velocities equal 1000–2000 m /s.
منابع مشابه
Investigating the Effect of Ultrasonification Time on Transition from Monolithic Porous Network to Size-Tunable Monodispersed Silica Nanospheres via Stöber Method
Abstract Uniform colloidal monodispersed silica nanoparticles were synthesized via stöber method using ammonia as a basic catalyst. Field Emission Scanning Electron Microscope (FESEM) was confirmed the homogeneous nanospheres. The decrease of TEOS concentration (0.067 to 0.012 mol L-1) and an increase of H2O concentration (3 to 14 mol L-1) at 14 mol L-1 NH3 fixed accelerated the rate of h...
متن کاملPhase transition plasticity in silicon nanospheres
We present a microscopic description for the response of crystalline Si nanospheres up to 10 nm in radius for various uniaxial compression levels. The behavior at low compressions closely resembles the Hertzian predictions. At higher compressions the creation of a new β-tin phase in the particle core leads to (i) volumetric changes (ii) an increase in elastic moduli, and (iii) significant harde...
متن کاملDislocation plasticity and phase transformations in Si-SiC core-shell nanotowers
Vapor-liquid-solid (VLS) Si nanotowers were coated with nanocrystalline SiC to form a Si-SiC core-shell composite. Due to a mismatch in the coefficients of thermal expansion (CTE), the Si core was under a compressive stress following the deposition. The composite tower was then cross-sectioned using focused ion beam milling, exposing the Si core. Indentation into the Si showed an increased toug...
متن کاملDirect synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates
Elevated temperature synthesis has been used to generate virtually defect free SiO2 sheathed crystalline silicon nanowires and silica (SiO2) nanospheres which can be agglomerated to wire-like configurations impregnated with crystalline silicon. The SiO2 passivated ~sheathed! crystalline silicon nanowires, generated with a modified approach using a heated Si–SiO2 mix, with their axes parallel to...
متن کاملEffect of colloidal Particles associated with the liquid bridge in sticking during drying in Superheated Steam
It is very important in the design of a drying system is to evaluate sticking behaviour of the materials goes under drying. A new approach to the sticking issue is applied in this study by carrying out a sticking test for the liquid associated with the materials under study. It was found that the liquid bridge is responsible of the initial sticking of the materials to the contact surface and th...
متن کامل